GEOMETRÍA

En este Blog puedes encontrar todo sobre geometría que se estudia en segundo ciclo de primaria.

POLÍGONOS

En geometría, un polígono es una figura plana compuesta por una secuencia finita de segmentos rectos consecutivos que cierran una región en el plano. Estos segmentos son llamados lados, y los puntos en que se intersecan se llaman vértices. El interior del polígono es llamado área. El polígono es el caso bidimensional .
La palabra polígono deriva del griego antiguo πολύγωνος (polúgonos), a su vez formado por πολύ (polú) ‘muchos’ y γωνία (gōnía) ‘ángulo’,1 2 3 aunque hoy en día los polígonos son usualmente entendidos por el número de sus lados.

Elementos de un polígono[editar · editar código]


Hexágono regular.
En un polígono se pueden distinguir los siguientes elementos geométricos:
  • Lado (L): es cada uno de los segmentos que conforman el polígono.
  • Vértice (V): es el punto de intersección (punto de unión) de dos lados consecutivos.
  • Diagonal (d): es el segmento que une dos vértices no consecutivos
  • Perímetro (P): es la suma de las longitudes de todos los lados del polígono.
  • Ángulo interior (AI): es el ángulo formado internamente por dos lados consecutivos.
En un polígono regular se puede distinguir, además:
  • Centro (C): es el punto equidistante de todos los vértices y lados.
  • Ángulo central (AC): es el formado por dos segmentos de recta que parten del centro a los extremos de un lado.
  • Apotema (a): es el segmento que une el centro del polígono con el centro de un lado; es perpendicular a dicho lado.
  • Diagonales unión de dos vértices no consecutivos por dentro del polígono.

Clasificación

Los polígonos se clasifican por el número de sus lados según la tabla adjunta, o bien por la forma de su contorno.
Polígono
Simple
Convexo
Regular
Irregular
Cóncavo
Complejo

Un polígono, por la forma de su contorno, se denomina:

  • Simple, si ningún par de aristas no consecutivas se corta.
  • Convexo, si al atravesarlo una recta lo corta en un máximo de dos puntos, es el que tiene todos sus ángulos menores que 180º.
  • Cóncavo, si al atravesarlo una recta puede cortarlo en más de dos puntos; es el que tiene uno o varios ángulos mayores que 180º.
  • Equilátero, si tiene todos sus lados iguales.
  • Regular, si es equilátero y equiángulo a la vez.
  • Irregular, si tiene sus ángulos y lados desiguales.
  • Estrellado, si se construye a partir de trazar diagonales en polígonos regulares. Se obtienen diferentes construcciones dependiendo de la unión de los vértices: de dos en dos, de tres en tres, etc.

No hay comentarios:

Publicar un comentario